Kamis, 31 Januari 2013

Kelas VIII | Tekanan Pada Zat Cair


Tekanan hidrostatis adalah tekanan pada zat cair yang diam. Besarnya tekanan hidrostatis tergantung pada jenis dan kedalaman zat cair, tidak tergantung pada bentuk wadahnya (asalkan wadahnya terbuka).

Besarnya tekanan hidrostatis dirumuskan dengan :
P = p g h

Keterangan:
P = tekanan (Pa atau N/m2))
p = massa jenis zat cair (kg/m3)
g = perepatan gravitasi bumi (m/s2 atau N/kg)
h = kedalaman (m)

Contoh Soal:
Suatu kolam yang dalamnya 2 meter diisi penuh air (pair = 1000 kg/m3). Jika percepatan gravitasi di tempat itu 10 m/s2, berapa tekanan hidrostatis suatu titik yang terletak 20 cm dari dasar kolam?
Penyelesaian :

p = 1000 kg/m3
g = 10 m/s2
h = (2 - 0,2) m = 1,8 m

Maka,  P = p g h = 1000. 10. 1,8 = 18.000 Pa

Read More

Selasa, 01 Januari 2013


Gradien
Coba kamu perhatikan dengan saksama Gambar 3.4 berikut ini.

Dari Gambar 3.4 terlihat suatu garis lurus pada bidang koordinat Cartesius. Garis tersebut melalui titik A(–6, –3), B(–4, –2), C(–2, –1), D(2, 1), E(4, 2), dan F(6, 3). Perbandingan antara ordinat (y) dan absis (x) untuk masing-masing titik tersebut adalah sebagai berikut.

Perhatikan perbandingan ordinat dengan absis untuk setiap titik tersebut.
Semua titik memiliki nilai perbandingan yang sama, yaitu 1/2. Nilai tetap atau konstanta dari perbandingan ordinat dan absis ini disebut sebagai gradien.
Biasanya gradien dilambangkan dengan m. Apa sebenarnya yang dimaksud dengan gradien? Coba kamu pelajari uraian berikut ini.

1. Pengertian Gradien
Pernahkah kamu mendaki gunung? Jika ya, kamu pasti akan menyusuri lereng gunung untuk dapat sampai ke puncak. Lereng gunung memiliki kemiringan tanah yang tidak sama, ada yang curam ada juga yang landai. Sama halnya dengan garis yang memiliki kemiringan tertentu. Tingkat kemiringan garis inilah yang disebut gradien. Perhatikan kembali garis lurus pada Gambar 3.4, berdasarkan perbandingan ordinat dan absis maka tingkat kemiringan atau gradien garis tersebut adalah
1/2.
2. Perhitungan Gradien
Ada berbagai cara untuk menghitung gradien dari suatu persamaan garis. Hal ini bergantung pada letak titik koordinat dan bentuk persamaan garis yang diberikan. Berikut ini akan diuraikan cara menghitung gradien berdasarkan titik koordinat atau bentuk persamaan garis.
a. Menghitung Gradien pada Persamaan Garis y = mx
Seperti yang telah dijelaskan sebelumnya, gradien suatu garis dapat ditentukan melalui perbandingan antara ordinat dan absis sehingga dapat ditulis sebagai berikut.

Dari uraian ini terlihat bahwa nilai gradien dalam suatu persamaan garis sama dengan besar nilai konstanta m yang terletak di depan variabel x, dengan syarat, persamaan garis tersebut diubah terlebih dahulu ke dalam bentuk y = mx.
b. Menghitung Gradien pada Persamaan Garis y = mx + c
Sama halnya dengan perhitungan gradien pada persamaan garis y = mx, perhitungan gradien pada garis y = mx + c dilakukan dengan cara menentukan nilai konstanta di depan variabel x.
c. Menghitung Gradien pada Persamaan Garis ax + by + c = 0
Sama seperti sebelumnya, gradien pada persamaan garis ax + by + c = 0 dapat ditentukan dengan cara mengubah terlebih dahulu persamaan garis tersebut ke dalam bentuk y = mx + c. Kemudian, nilai gradien diperoleh dari nilai konstanta m di depan variabel x.
d. Menghitung Gradien pada Garis yang Melalui Dua Titik
Coba kamu perhatikan Gambar 3.5 berikut.

Gambar 3.5 menunjukkan tiga buah segitiga ABC, DEF, dan GHI yang memiliki sisi miring dengan tingkat kemiringan atau gradien yang berbedabeda. Dengan menggunakan perbandingan ordinat dan absis, gradien untuk masing-masing segitiga dapat dihitung sebagai berikut.

Sekarang, perhatikan Gambar 3.6 . Gambar tersebut menunjukkan sebuah garis lurus pada bidang koordinat yang melalui titik P dan R. Untuk mencari gradien garis tersebut, kamu tinggal menentukan gradien PR pada segitiga PQR. Dengan menggunakan perbandingan ordinat dan absis, akan diperoleh gradien garis yang melalui titik P dan R, yaitu:

Jadi, gradien garis yang melalui P(1, 3) dan R(7, 6) pada Gambar 3.6 adalah 1/2. Dari uraian tersebut diperoleh rumus umum untuk mencari gradien pada garis yang melalui dua titik, sebagai berikut.

3. Sifat-Sifat Gradien
Ada beberapa sifat gradien yang perlu kamu ketahui, di antaranya adalah gradien garis yang sejajar dengan sumbu-x, gradien garis yang sejajar dengan sumbu-y, gradien dua garis yang sejajar, dan gradien dua garis yang saling tegak lurus. Berikut ini akan diuraikan sifat-sifat gradien tersebut.
a. Gradien Garis yang Sejajar dengan Sumbu-x
Perhatikan gambar berikut.

Pada Gambar 3.7 , terlihat garis k yang melalui titik A(–1, 2) dan B(3, 2). Garis tersebut sejajar dengan sumbu-x. Untuk menghitung gradien garis k, gunakan cara sebagai berikut.
Untuk titik A(–1, 2) maka x1 = –1, y1 = 2.
Untuk titik B(3, 2) maka x2 = 3, y2 = 2.



Coba kamu periksa titik-titik lain pada garis k dan hitunglah gradiennya. Apakah nilai gradiennya sama dengan 0? Uraian tersebut memperjelas tentang gradien garis yang sejajar dengan sumbu-x, yaitu sebagai berikut.
Jika garis sejajar dengan sumbu- x maka nilai gradiennya adalah nol.
b. Gradien garis yang sejajar dengan sumbu-y
Perhatikan gambar berikut.

Pada Gambar 3.8 , garis l yang melalui titik C(1, 3) dan D(1, –1). letaknya sejajar dengan sumbu-y. Gradien garis tersebut adalah sebagai berikut.
Untuk titik C(1, 3) maka x1 = 1, y1 = 3.
Untuk titik D(1, –1) maka x2 = 1, y2 = –1.




Perhitungan di atas, memperjelas sifat gradien berikut.
Jika garis sejajar dengan sumbu-y maka garis tersebut tidak memiliki gradien.
c. Gradien Dua Garis yang Sejajar
Sekarang coba kamu perhatikan Gambar 3.9

Garis k dan l merupakan dua garis yang sejajar. Bagaimana gradien kedua garis tersebut? Perhatikan uraian berikut.
• Garis k melalui titik A(–2, 0) dan B(0, 2).
Untuk titik A(–2, 0) maka x1 = –2, y1 = 0.
Untuk titik B(0, 2) maka x2 = 0, y2 = 2.



• Garis l melalui titik C(0, –1) dan D(1, 0).
Untuk titik C(0, –1) maka x1 = 0, y1 = –1.
Untuk titik D(1, 0) maka x2 = 1, y2 = 0.



Dari uraian tersebut terlihat bahwa garis k dan l memiliki gradien yang sama.
Setiap garis yang sejajar memiliki gradien yang sama.
d. Gradien Dua Garis yang Tegak Lurus
Coba kamu perhatikan Gambar 3.10 . Pada gambar tersebut terlihat garis k tegak lurus dengan garis l.

Gradien kedua garis tersebut dapat dihitung dengan cara sebagai berikut.
• Garis k melalui titik C(3, 0) dan D(0, 3).
Untuk titik C(3, 0) maka x1 = 3, y1 = 0.
Untuk titik D(0, 3) maka x2 = 0, y2 = 3.




• Garis l melalui titik A(–1, 0) dan B(0, 1).
Untuk titik A(–1, 0) maka x1 = –1, y1 = 0.
Untuk titik B(0, 1) maka x2 = 0, y2 = 1.




Hasil kali kedua gradien tersebut adalah
mAB× mCD = 1 × –1 = –1
Uraian tersebut memperjelas hal berikut:
Hasil kali antara dua gradien dari garis yang saling tegak lurus adalah –1.
Read More

Garis Lurus


A. Pengertian Persamaan Garis Lurus
Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam koordinat Cartesius. Untuk itu, pelajarilah uraian berikut.
1. Koordinat Cartesius
Pada bab sebelumnya, kamu telah mengenal tentang bidang Cartesius. Coba kamu perhatikan Gambar 3.1 dengan seksama. Gambar tersebut menunjukkan bidang koordinat Cartesius yang memiliki sumbu mendatar (disebut
sumbu-x) dan sumbu tegak (disebut sumbu-y). Titik potong kedua sumbu tersebut dinamakan titik asal atau titik pusat koordinat. Pada Gambar 3.1, titik pusat koordinat Cartesius ditunjukkan oleh titik O (0, 0). Sekarang, bagaimana menggambar titik atau garis pada bidang koordinat Cartesius?

a. Menggambar Titik pada Koordinat Cartesius
Setiap titik pada bidang koordinat Cartesius dinyatakan dengan pasangan berurutan x dan y, di mana x merupakan koordinat sumbu-x (disebut absis) dan y merupakan koordinat sumbu-y (disebut ordinat). Jadi, titik pada bidang koordinat Cartesius dapat dituliskan (x, y). Pada Gambar 3.2 , terlihat ada 6 buah titik koordinat pada bidang koordinat Cartesius. Dengan menggunakan aturan penulisan titik koordinat, keenam titik tersebut dapat dituliskan dalam bentuk sebagai berikut.


b. Menggambar Garis pada Koordinat Cartesius
Kamu telah memahami bagaimana menggambar titik pada bidang koordinat Cartesius. Sekarang bagaimana menggambar garis lurus pada bidang yang sama? Coba perhatikan Gambar 3.3

Perlu diingat, garis lurus adalah kumpulan titik-titik yang letaknya sejajar. Dari Gambar 3.3(a) , terlihat bahwa titik-titik P, Q, R, S, T, dan U memiliki letak yang sejajar dengan suatu garis lurus, misalkan garis k, seperti yang digambarkan pada Gambar 3.3(b). S ebuah garis lurus dapat terbentuk dengan syarat sedikitnya ada dua titik pada bidang koordinat Cartesius.

2. Menggambarkan Persamaan Garis Lurus
Setelah kamu mempelajari materi sebelumnya, apa yang dapat kamu ketahui tentang persamaan garis lurus? Persamaan garis lurus adalah suatu persamaan yang jika digambarkan ke dalam bidang koordinat Cartesius akan membentuk sebuah garis lurus. Cara menggambar persamaan garis lurus adalah dengan menentukan nilai x atau y secara acak. Perlu diingat bahwa dua titik sudah cukup untuk membuat garis lurus pada bidang koordinat Cartesius.
Read More

Rumus ALJABAR - MATEMATIKA kelas VII



 A. BENTUK ALJABAR dan UNSUR-UNSURNYA

Bentuk ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat huruf-huruf untuk mewakili bilangan yang belum diketahui. Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan masalah dalam kehidupan sehari-hari. Hal-hal yang tidak diketahui seperti banyaknya bahan bakar minyak yang dibutuhkan sebuah bis dalam tiap minggu, jarak yang ditempuh dalam waktu tertentu, atau banyaknya makanan ternak yang dibutuhkan dalam 3 hari, dapat dicari dengan menggunakan aljabar.

A. UNSUR - UNSUR ALJABAR 

 1. Variabel, Konstanta, dan Faktor
Perhatikan bentuk aljabar 5x + 3y + 8x – 6y + 9. Pada bentuk aljabar tersebut, huruf x dan y disebut variabel. Variabel adalah lambang pengganti suatu bilangan yang belum diketahui nilainya dengan jelas. Variabel disebut juga peubah. Variabel biasanya dilambangkan dengan huruf kecil a, b, c, ..., z.

Adapun bilangan 9 pada bentuk aljabar di atas disebut konstanta. Konstanta adalah suku dari suatu bentuk aljabar yang berupa bilangan dan tidak memuat variabel. Jika suatu bilangan a dapat diubah menjadi a = p X q dengan a, p, q bilangan bulat, maka p dan q disebut faktor-faktor dari a.

Pada bentuk aljabar di atas, 5x dapat diuraikan sebagai 5x = 5 X x atau 5x = 1 X 5x. Jadi, faktor-faktor dari 5x adalah 1, 5, x, dan 5x. Adapun yang dimaksud koefisien adalah faktor konstanta dari suatu suku pada bentuk aljabar. Perhatikan koefisien masing-masing suku pada bentuk aljabar 5x + 3y + 8x – 6y + 9. Koefisien pada suku 5x adalah 5, pada suku 3y adalah 3, pada suku 8x adalah 8, dan pada suku –6y adalah –6.

2. Suku Sejenis dan Suku Tak Sejenis

a) Suku adalah variabel beserta koefisiennya atau konstanta pada bentuk aljabar yang dipisahkan oleh operasi jumlah atau selisih.

Suku-suku sejenis adalah suku yang memiliki variabel dan pangkat dari masing-masing variabel yang sama. Contoh: 5x dan –2x, 3a2 dan a2, y dan 4y, ...

Suku tak sejenis adalah suku yang memiliki variabel dan pangkat dari masing-masing variabel yang tidak sama. Contoh: 2x dan –3x2, –y dan –x3, 5x dan –2y, ...

b) Suku satu adalah bentuk aljabar yang tidak dihubungkan oleh operasi jumlah atau selisih. Contoh: 3x, 2a2, –4xy, ...

c) Suku dua adalah bentuk aljabar yang dihubungkan oleh satu operasi jumlah atau selisih. Contoh: 2x + 3, a2 – 4, 3x2 – 4x, ...

d) Suku tiga adalah bentuk aljabar yang dihubungkan oleh dua operasi jumlah atau selisih. Contoh: 2x2 – x + 1, 3x + y – xy, ...

Bentuk aljabar yang mempunyai lebih dari dua suku disebut suku banyak.

B. OPERASI HITUNG PADA ALJABAR

1. Penjumlahan dan Pengurangan Bentuk Aljabar
Pada bentuk aljabar, operasi penjumlahan dan pengurangan hanya dapat dilakukan pada suku-suku yang sejenis. Jumlahkan atau kurangkan koefisien pada suku-suku yang sejenis.

2. Perkalian
Perlu kalian ingat kembali bahwa pada perkalian bilangan bulat berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a X (b + c) = (a X b) + (a X c) dan sifat distributif perkalian terhadap pengurangan, yaitu a X (b – c) = (a X b) – (a X c), untuk setiap bilangan bulat a, b, dan c. Sifat ini juga berlaku pada perkalian bentuk aljabar.

3. Perpangkatan
Coba kalian ingat kembali operasi perpangkatan pada bilangan bulat. Operasi perpangkatan diartikan sebagai perkalian berulang dengan bilangan yang sama. Hal ini juga berlaku pada perpangkatan bentuk aljabar. Pada perpangkatan bentuk aljabar suku dua, koefisien tiap suku ditentukan menurut segitiga Pascal. Misalkan kita akan menentukan pola koefisien pada penjabaran bentuk aljabar suku dua (a + b)n, dengan n bilangan asli.
Perhatikan uraian berikut:


Pada segitiga Pascal tersebut, bilangan yang berada di bawahnya diperoleh dari penjumlahan bilangan yang berdekatan yang berada di atasnya.

4. Pembagian
Hasil bagi dua bentuk aljabar dapat kalian peroleh dengan menentukan terlebih dahulu faktor sekutu masing-masing bentuk aljabar tersebut, kemudian melakukan pembagian pada pembilang dan penyebutnya.

5. Substitusi pada Bentuk Aljabar
Nilai suatu bentuk aljabar dapat ditentukan dengan cara menyubstitusikan sebarang bilangan pada variabel-variabel bentuk aljabar tersebut.

6. Menentukan KPK dan FPB Bentuk Aljabar
Coba kalian ingat kembali cara menentukan KPK dan FPB dari dua atau lebih bilangan bulat. Hal itu juga berlaku pada bentuk aljabar. Untuk menentukan KPK dan FPB dari bentuk aljabar dapat dilakukan dengan menyatakan bentuk-bentuk aljabar tersebut menjadi perkalian faktor-faktor primanya. Perhatikan contoh berikut:


C. PECAHAN BENTUK ALJABAR


1. Menyederhanakan Pecahan Bentuk Aljabar
Suatu pecahan bentuk aljabar dikatakan paling sederhana apabila pembilang dan penyebutnya tidak mempunyai faktor persekutuan kecuali 1, dan penyebutnya tidak sama dengan nol. Untuk menyederhanakan pecahan bentuk aljabar dapat dilakukan dengan cara membagi pembilang dan penyebut pecahan tersebut dengan FPB dari keduanya.

2. Operasi Hitung Pecahan Aljabar dengan Penyebut Suku Tunggal

a. Penjumlahan dan pengurangan
Pada bab sebelumnya, kalian telah mengetahui bahwa hasil operasi penjumlahan dan pengurangan pada pecahan diperoleh dengan cara menyamakan penyebutnya, kemudian menjumlahkan atau mengurangkan pembilangnya. Kalian pasti juga masih ingat bahwa untuk menyamakan penyebut kedua pecahan, tentukan KPK dari penyebut-penyebutnya. Dengan cara yang sama, hal itu juga berlaku pada operasi penjumlahan dan pengurangan bentuk pecahan aljabar. Perhatikan contoh berikut:


b. Perkalian dan pembagian
Perkalian pecahan aljabar tidak jauh berbeda dengan perkalian bilangan pecahan. Perhatikan contoh berikut:


c. Perpangkatan pecahan bentuk aljabar
Operasi perpangkatan merupakan perkalian berulang dengan bilangan yang sama. Hal ini juga berlaku pada perpangkatan pecahan bentuk aljabar. Perhatikan contoh berikut:

Read More

Persegi Panjang


Definisi Persegi Panjang

Persegi panjang adalah bangun datar yang mempunyai empat rusuk. Rusuk-rusuknya yang saling berhadapan sama panjang. Persegi panjang mempunyai empat titik sudut dan masing-masing sudutnya adalah siku-siku.
Persegi panjang mempunyai 2 pasang rusuk yang sama panjang, rusuk yang lebih panjang sebut panjang, dan yang lebih pendek disebut lebar

Keliling Persegi Panjang

Keliling persegi panjang adalah jumlah dari seluruh rusuk-rusuknya. 2 buah rusukpanjang dan 2 buah rusuk lebar..

Keliling Persegi Panjang = p+p+l+l
= 2p + 2l
= 2 (p+l)

Jadi, keliling persegi panjang = 2 (p + l)
Luas Persegi Panjang
Luas persegi panjang adalah areal atau bidang yang ada di dalam bangun persegi panjang.
Sebenarnya sama saja pada intinya dengan persegi, namun karena panjang rusuk-rusuknya ada yang berbeda maka diganti dengan panjang dan lebar.

Luas persegi panjang = panjang x lebar 
Read More

Jajar Genjang


Definisi Jajar Genjang

Jajar genjang adalah sebuah bangun datar yang mempunyai dua pasang rusuk yang sejajar dan sama panjangnya. Jajar genjang memiliki dua pasang sudut yang bukan siku-siku. Sudut yang berhadapan pada jajar genjang memiliki besar sudut yang sama.
Jajar genjang yang memiliki empat buah rusuk yang sama disebut belah ketupat.
Keliling Jajar genjang
Keliling jajar genjang adalah jumlah dari seluruh rusuknya. Karena rusuk atas sama panjang dengan rusuk alas dan kedua rusuk miringnya sama panjang maka keliling dapat disimpulkan sebagai berikut:
Keliling jajar genjang = rusuk atas + rusuk bawah + rusuk miring1 + rusuk miring2
Di mana: rusuk atas = rusuk bawah(alas); rusuk miring1 = rusuk miring2
Maka dapat diasumsikan menjadi:
Keliling jajar genjang = 2 (alas) + 2 (rusuk miring)
Atau dapat juga diringkas menjadi:
Keliling jajar genjang = 2 (alas + rusuk miring)

Luas jajar genjang
Luas jajar genjang adalah alas dikali tinggi jajar genjang. Mengapa alas dikali tinggi?
Karena apabila kita tarik garis tinggi dari sudut kiri atas jajar genjang turun ke bawah, maka akan menjadi sebuah segitiga. Apabila segitiga itu kita pindahkan ke bagian yang kosong di sebelah kanan bawah, maka akan menjadi sebuah persegi panjang.
Oleh karena itu Luas jajar genjang = alas x tinggi

Read More

Bangun Datar Persegi


Definisi Persegi

Persegi adalah bangun datar yang memiliki empat sisi yang sama panjang.
Sisi persegi biasanya disebut "s" atau "a". (Tergantung dari yang nulis maunya gimana hehehe..)

Keliling Persegi

Keliling itu adalah jumlah dari seluruh jarak yang ditempuh dari satu titik ke titik itu lagi.
Sebagai contoh.. persegi ABCD..
Persegi ABCD memiliki 4 titik sudut. Apabila kita memutari persegi ini dari titik A menuju B, lalu ke C, dan ke D, lalu ke A. maka dari panjang yang kita tempuh adalah keliling persegi.
Kalau digambar seperti ini:

Rumusnya :
Keliling = sisi + sisi + sisi + sisi
Keliling = 4 x sisi


Luas Persegi

Luas adalah area atau bidang yang ada di dalam persegi..

Rumus luas persegi adalah

L = s x s

atau

L = s2
Sebagai contoh.. persegi di atas.
Ini adalah persegi ukuran panjang dan lebar 4cm.
Luasnya:

L = s x s
L = 4 x 4
L = 16 
Read More

BILANGAN

Bilangan nyata adalah semua bilangan yang dapat ditemukan pada garis bilangan dengan cara penghitungan, pengukuran, atau bentuk geometrik. Bilangan –bilangan tersebut ada di dunia nyata. Ada berbagai macam bilangan yang termasuk dalam bilangan nyata.
  1. Bilangan asli adalah bilangan-bilangan yang terdapat pada garis bilangan berikut disebut bilangan asli. Nama lain dari bilangan ini adalah bilangan hitung atau bilangan yang bernilai positif(integer positif).
{ 1,2,3,4,5,6,7,8,9,..........}
  1. Bilangan Cacah adalah Bilangan asli dengan tambahan bilangan 0
{ 0,1,2,3,4,5,6,7,8,9........}
  1. Bilangan negatif ( integer negatif ) adalah bilangan yang letaknya disebelah kiri nol ( 0 )
Contoh :
-1 , -2, -3, -4, -5,...........
  1. Bilangan Bulat adalah bilangan asli, bentuk negatif dari bilangan asli tersebut, dan bilangan 0.
Contoh :
{ ........,-3,-2,-1,0,1,2,3,.........}
  1. Bilangan rasional adalah bilangan-bilangan yang erupakan rasio (pembagian) dari dua angka ( integer )
Contohnya adalah ¾ , 2/3, ½, 5/4, dll.
Pecahan-pecahan termasuk sekumpulan bilanga rasional.
Pecahan desimal adalah pecahan-pecahan dengan bilangan penyebut 10, 100, dst. { 1/10, 1/100, 1/1000 } semua bilangan ini dapat ditemukan dalam garis-garis bilangan.
  1. Bilangan irasional adalah suatu bilangan yang terdapat pada suatu garis bilangan yang tidak dapat di alokasikan dengan cara biasa karena bilangan ini tidak dapat digambarkan seperti halnya bilangan rasional.
Contoh bilangan irasional adalah . nilai taksiran nilai dari adalah 1,414. juga merupakan bilangan irasional . bilanga tersebut merupakan hasil pembagian dari keliling lingkaran dengan diameter dan taksirannya adalah 3,14.
  1. Bilangan imajiner adalah apabilan sebuah bilangan bukan merupakan bilangan nyata( dalam artian bilangan tersebut bukan merupakan bilangan rasional maupun irasional ), maka bilangan tersebut dikatakan imajiner. Bilangan imajiner dinyatakan dengan b i, b e R dan i = atau i2 = -1
  1. Bilangan komplek adalah suatu bilangan yang merupakan penjumlahan antara bilangan real dan bilangan imajiner. Bilagan komplek dinyatakan dengan a + bi, a e R , b e R. Contohnya : 3 + 4i, 5 – 7i.

Read More